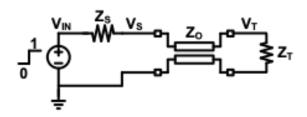
SME737006: Advanced Packaging & Integrated Chips

(Due: 05/2/25)

Homework Assignment #2

Instructor: Chixiao Chen, Wenning Jiang Name: , FudanID:

- This HW counts 15% of your final score, please treat it carefully.
- Please submit the electronic copy via mail: faet_english@126.com before 05/02/2025 11:59pm. Please use "Chiplet-Hmwk-2"+Your Name+Your FudanID as the mail title.
- It is encouraged to use LATEX to edit it, the source code of the assignment is available via: https://www.overleaf.com/read/bqwfcnfpqsbg#8863f2
- You can answer the assignment either in Chinese or English


Problem 1: Signal Transmission and Reflection

(40 points)

As shown in the figure, the source voltage is initially 0-V at time 0 ns. At 1 ns, the source generates a 1-V stepping signal. Assuming that:

- Source impedance: $Z_s = 100 \,\Omega$
- Transmission line characteristic impedance: $Z_o = 50 \Omega$
- Transmission line delay: $T_d = 1 \text{ ns}$
- Load impedance: $Z_t = 500 \,\Omega$

Please 1) calculate the reflection coefficient at the load end, 2) calculate the voltage at the source end V_s and at the load end V_t for the first five time intervals, where each interval corresponds to one transmission delay T_d , with the detailed process 3) plot the voltage waveforms over time, illustrating voltage changes at both the source and load ends.

Problem 2: High-speed Link Paper Review

(60 points)

Please write a summary report within two-pages (a4) about one of ISSCC high-speed link paper in recent 3 years, focus on the idea, improvement and comparison with the state-of-the-arts, excluding the one I have shown in the course.

A paper list pool is shown as follow, where rows in green are ISSCC 2024, in blue from ISSCC 2023, and in yellow from ISSCC 2022.

	时钟提升	TX均衡	RX均衡	速度/能效	调制方式
SK_Hynix_13.1	高SNR、低功耗时钟 架构(快速唤醒)			35.4Gb/s/p	PAM3
南科大_13.5	抖动降低87% (CIJ)	XTC (5b-C- peaking) 、可重构 FS-FFE		64Gb/s/p 1.27pJ/b	PAM4
Samsung_13.6	WCK CDN优化(減 少了60mA/die, 16Gb/s)	Gain-controlled FFE(优化PVT性能)、 ZQ校准优化RLM	CTLE与1-tap DFE合 并使用,简化反馈 路径	37Gb/s	PAM3
SK_Hynix_13.8	时钟校准(减小了 四相偏移量65%)		Offset_calib(w 1-tap DFE) 、用于检测的 IO减小了DQ PAD的 寄生电容39%	10.5Gb/s/p	
Samsung_13.10	HCRG、DCC	Cap_EQ On chip EQ(周期更 短)	Offset_calib(数字 控制)	48Gb/s 0.67pJ/b	NRZ
Samsung_6.4	Phase- training(SYNC_G)	Cap_EQ(XTC)	DFE w double tail latch(减小了反馈时 间)	32Gb/s	NRZ
Samsung_28.3	SWJC(调整温度码的 转换)	FS-FFE 3bit C-peaking 松弛阻抗匹配	松弛阻抗匹配	16Gb/s	PAM4/NRZ
首尔大学_28.6	CEC(边沿校正器, 修正4相相位误差、 减小功耗)	Driver(PN over NP, 更好的非线性) 2-tap Edge boosting (cap和T-coil)		32Gb/s 0.51pJ/b	NRZ
Samsung_28.2	WCK训练(调节电流、 3ps)	ZQ编码(多路复用 合并、优化了ISI和 PSIJ、移除了2个T- coil)		27Gb/s	
浦项科技大学_28.4		4-tap A-FFE(基于反相器、改善面积功 耗摆幅)		20Gb/s 1.18pJ/b	NRZ
高丽大学_28.5		Di-code EQ(可提供 合适CM电压)	INV-BASED TIA Di-code ECC (硬件 开销更小) 无电容失配校准	10Gb/s 0.385pJ/b	Di-code
国立首尔大学_28.6		电容驱动链路(FFE) 与Ground强制偏置 技术组合		12Gb/s	NRZ
Samsung_28.7	无需高速DCC/CDR			20Gb/s 1.24pJ/b	DECS