

先进封装与集成芯片 Advanced Package and Integrated Chips

Lecture 2 : Damascene, 2.5D Integration Instructor: Chixiao Chen, Ph. D

Overview

- Damascene process and its application in Advanced Package
- > 2.5D (2.xD) Integration technologies
 - Silicon TSV interposer
 - Fan Out Package

Why copper (Cu) interconnect ?

- ➢ better conductivity (37%)
- much less susceptibility to electromigration (10x)
- enhanced heat dissipation (60%)

- Why do not use Cu in CMOS technology initially?
 - > Diffuse Silicon/SiO₂ (i.e. poisonous for devices)
 - Difficult (even impossible) to etch by plasma
 - Quickly oxidizes in air

Key idea of Damascene Process

- > IBM introduces Damascene Process, forming Cu interconnect, in 1990
- > Why called it Damascene?
 - To make intricately patterned, highly polished steel that was used for swords and knives, metal-smiths in Damascus developed a specific technology.
 - > Now, Damascus is the capital of modern Syria.
- Key idea of Damascene Process
 - Replace the copper etching with Chemical Mechanical Planarization
 - Insert a special barrier, typciall Ta, TaN, TiN, TiW, to stop copper diffusion

Single Damascene Process

- 1. Dielectric (SiO₂/SiN) Deposition
- 2. Photolithography and Dielectric Etching, leaving trenches/vias
- 3. Barrier layer (TiN) deposition
- 4. Copper deposition by electroplating or chemical vapor deposition
 > Two step: thin seed layer + thick layer
- 5. Chemical-Mechanical Polishing (CMP), remove the excess

Note: TiN is conductor. Damascene is additive.

- Motivation: making the inter-layer vias without separate via process.
- 1. <u>Two layer</u> Dielectric Deposition
- 2. Trench etching (upper layer) using lithography and plasma etching
- 3. Via etching (lower oxide layer)
- 4. Barrier layer (TiN) deposition
- 5. Two step copper deposition
- Chemical-Mechanical Polishing (CMP), remove the excess copper

Dual Damascene Process

Categories of 2D-2.5D Chiplet Integration

A Deep Dive on 2.5D AI Chips

Silicon Interposer

- Silicon interposer provides extreme dense interconnect between different dies. Line space and pitch can be set to 400um/RDL layer.
- > Normally no active devices in interposer, thus no functions.

(if exists, called active interposer)

Architecture	Parallel Interface	Serial Interface
Package	2.5D interposer	Organic substrate
Bump pitch	40 - 55 µm	$130-150\ \mu m$
Interc . density	$10^2 - 10^3$ IO/mm ²	10^1 IO/mm ²
Line space	>0.4 µm	>10 µm
Interc . length	<5 mm	<50 mm
Data rate/lane	2 – 8 Gbps	2.5 – 112 Gbps
BW density	2-3 Tbps/mm	1.6-2 Tbps/mm
Power	<0.5 pJ/bit	1.0-1.5 pJ/bit
Latency TX+RX	~4.5 ns	~5.5 ns
Bit error rate	<<1E-15	<1e-15 for NRZ
Standards	HBI, OpenHBI, AIB2.0	OIF, CEI 112G, USR/XSR

The Damascene Process in TSV fabrication

- \blacktriangleright A similar process is applied for TSV application, which has approximately 10 µm opening in diameter and about 105 µm depth, which give an aspect ratio of 10.5.

Deep Reactive Ion Etching

- Traditional wet etching methods tend to produce tapered vias, while DRIE is capable of etching these deep, narrow holes while maintaining a high aspect ratio.
- Bosch process, which alternates between etching and passivation (on the sidewalls of the via to protect them during the etching process) cycles,

Connecting Metal Routing to TSVs

Under Bump Metallization

- The UBM serves as an interface layer between the chip's bond pad and the solder or copper pillar, ensuring a reliable mechanical and electrical connection.
- Flow: PI patterning, UBM sputtering, PR patterning, bump plating, PR stripping, UBM etching and flow.
- Nickel/Ti to serve as barrier to prevent the diffusion of copper or aluminum into each other.

Packaging Flow for Silicon Interposer

Underfill

- Underfill refers to an epoxy-based (organic) material applied between a die and interposer, providing additional mechanical support and distributing thermal stresses evenly and enhancing electrical reliability due to solder joint fatigue.
- Capillary Underfill: underfill material is applied at one edge of the chip, and through capillary action, the material flows into the gaps between the chip and the substrate. Underfill flow: CoW alignment, solder reflow, flux cleaning, dispensing, curing.

Stress Analysis for Interposer Warpage

Advanced Silicon Interposer Technology

- To fabricate an interposer whose area is larger than reticle size, splitting and stitching is needed. Lithography stepper has less resolution at stitching boundaries.
- To enhance the power integrity, deep trench capacity (DTC) is required, like DRAM. DTC is embedded in silicon interposer with highk dielectronic.

Roadmap of CoWoS-S Technology

1.5X, 4 HBM

2011

1.0X

2023 4x, 12 HBM

2021

3x, 8 HBM

Epoxy Molding Compound

- Conventional packages use an epoxy mold compound to fully embed the dies, rather than placing them upon a substrate or interposer.
- Epoxy resin reacts with a curing material under 180-220 C temperature, forming solid layer excellent mechanical strength and thermal stability.

RDL on Epoxy Molding Compound

After a chip is encapsulated with epoxy molding compound (EMC), a dielectric layer, often a photosensitive polyimide (PI), is applied over the exposed I/O pads. The metal layer, typically copper (Cu), is then deposited and patterned to form the desired interconnects.

Fan-Out Wafer Level Packaging Technology

- Fan-In vs. Fan-Out, an cost effective way.
- EMC has a higher coefficient of thermal expansion (CTE) (10-20 ppm/°C) compared to silicon (2.6 ppm/°C). This mismatch causes die shift and warpage necessitating larger line widths and spacing.
 cess time-temperature-profile

Fan-Out Wafer Level Packaging Technology

Chip-first with die face down: 1 place on a carrier 2 Epoxy Molding 3 RDL Chip-first with die face up: 1 Cu stud and Die attach 2 Molding 3 grindling 4 RDL

Fan-Out Wafer Level Packaging Technology

Chip-first with die face down: ① place on a carrier ② Epoxy Molding ③ RDL Chip-first with die face up: ① Cu stud and Die attach ② Molding ③ grindling ④ RDL

Organic Interposer Using Chip Last

- Issues of Chip first technology: die drift due to molding process. Limited routing metal L/S (10µm for Face down, 5µm for face up)
- > Chip-last / RDL-first is developed to reduce the minimum L/S to $2\mu m$.

Packaging Flow Comparison for Fan Out

Silicon Interposer Vs. RDL Interposer.

- Silicon interposer adopts BEOL CMOS technology, achieving 400nm line width/spacing, 200nm via diameter.
- > RDL interposers's width and pitch is 5-10x higher, but cost effective and large area.

Fan-Out for Ultra High Performance Computing

- Full wafer integration (System-on-wafer) is an emerging technology for ultra-high performance computing and high bandwidth die-to-die communication.
- Leveraging Fan-Out technology is a SoW solution with Known-Good-Dies. It also allows heterogeneous integration of compute/IO/... chiplets and integrated power.

Tesla Dojo supercomputer is the first industry full-wafer heterogeneous integration technolgy with good process control and high quality RDL.

